Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultraviolet refractometry using field-based light scattering spectroscopy

Authors
Fu, DanChoi, WonshikSung, YongjinOh, SeungeunYaqoob, ZahidPark, YongkeunDasari, Ramachandra R.Feld, Michael S.
Issue Date
21-10월-2009
Publisher
OPTICAL SOC AMER
Citation
OPTICS EXPRESS, v.17, no.21, pp.18878 - 18886
Indexed
SCIE
SCOPUS
Journal Title
OPTICS EXPRESS
Volume
17
Number
21
Start Page
18878
End Page
18886
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/119100
DOI
10.1364/OE.17.018878
ISSN
1094-4087
Abstract
Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is <= 0.003. The precision of refractive index measurements is <= 0.002 and that of specific refractive index increment determination is < 0.01 mL/g. (C) 2009 Optical Society of America
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, Won shik photo

Choi, Won shik
이과대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE