Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: Quantum mechanical/molecular mechanical molecular dynamics simulations

Authors
Yang, SeongeunCho, Minhaeng
Issue Date
7-10월-2009
Publisher
AMER INST PHYSICS
Citation
JOURNAL OF CHEMICAL PHYSICS, v.131, no.13
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF CHEMICAL PHYSICS
Volume
131
Number
13
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/119122
DOI
10.1063/1.3243078
ISSN
0021-9606
Abstract
The vibrational absorption (IR) and vibrational circular dichroism (VCD) spectra of alanine dipeptide analog in water are directly calculated by Fourier transforming the time correlation functions of the electric and magnetic dipole moments, which are calculated using the dynamic partial charges and trajectory of the peptide generated from the quantum mechanical/molecular mechanical molecular dynamics simulations. The alanine dipeptide analog is treated at the Hartree-Fock level with 3-21G, 4-31G, 6-31G, and 6-31G* basis sets and the solvent H2O is modeled with the TIP3P water. The atomic partial charges are obtained from the Lowdin population analysis, which gives consistent IR spectral profiles irrespective of the basis sets used. The simulated VCD spectrum by a polyproline I(P-II)- dominant trajectory is compatible with the previous experimental results of the polyproline peptides, where the amide I and II VCD bands are negative couplets with a weak positive peak to the high frequency region. The sampling efficiency of the P-II conformer is much lower than the other ones at all basis levels used. The simulated VCD spectrum of alpha-helix averaged over five trajectories has the reverse sign pattern compared to the P-II spectrum and is found to be consistent with the previously observed spectral features of alpha-helical polypeptides. The sign patterns of the beta-strand VCD spectrum are qualitatively similar to the experimental spectra of beta-sheet rich proteins. The VCD spectra obtained from the trajectories containing several extended conformers such as beta and P-II are not clearly distinguishable from the beta-strand-dominant spectra. It is interesting that the P-II and the coil VCD spectra coincide in sign pattern and relative intensity for all amide modes. This demonstrates that the negative couplet structures of the amide I and II VCD spectra do not necessarily prove the dominance of either P-II or coil conformation. We anticipate that the present method can be used to directly simulate the IR and VCD spectra of structurally heterogeneous biomolecules in condensed phases. (C) 2009 American Institute of Physics. [doi:10.1063/1.3243078]
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Min haeng photo

Cho, Min haeng
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE