Reducing Payload Inspection Cost Using Rule Classification for Fast Attack Signature Matching
- Authors
- Kim, Sunghyun; Lee, Heejo
- Issue Date
- 10월-2009
- Publisher
- IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG
- Keywords
- intrusion detection system; signature matching; rule classification; pattern matching
- Citation
- IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, v.E92D, no.10, pp.1971 - 1978
- Indexed
- SCIE
SCOPUS
- Journal Title
- IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS
- Volume
- E92D
- Number
- 10
- Start Page
- 1971
- End Page
- 1978
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/119162
- DOI
- 10.1587/transinf.E92.D.1971
- ISSN
- 0916-8532
- Abstract
- Network intrusion detection systems rely on a signature-based detection engine. When under attack or during heavy traffic, the detection engines need to make a fast decision whether a packet or a sequence of packets is normal or malicious. However, if packets have a heavy payload or the system has a great deal of attack patterns, the high cost of payload inspection severely diminishes detection performance. Therefore, it Would be better to avoid unnecessary payload scans by checking the protocol fields in the packet header, before executing their heavy operations of payload inspection. When payload inspection is necessary, it is better to compare a minimum number of attack patterns. In this paper, we propose new methods to classify attack signatures and make pre-computed multi-pattern groups. Based on IDS rule analysis, we grouped the signatures of attack rules by a multi-dimensional classification method adapted to a simplified address flow. The proposed methods reduce unnecessary payload scans and make light pattern groups to be checked. While performance improvements are dependent on a given networking environment, the experimental results with the DARPA data set and university traffic show that the proposed methods Outperform the most recent Snort by up to 33%.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Computer Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.