Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Interface electronic structures of organic light-emitting diodes with WO3 interlayer: A study by photoelectron spectroscopy

Authors
Son, Min JungKim, SehunKwon, SoonnamKim, Jeong Won
Issue Date
7월-2009
Publisher
ELSEVIER SCIENCE BV
Keywords
Tungsten oxide; Hole injection layer; OLED; Photoelectron spectroscopy
Citation
ORGANIC ELECTRONICS, v.10, no.4, pp.637 - 642
Indexed
SCIE
SCOPUS
Journal Title
ORGANIC ELECTRONICS
Volume
10
Number
4
Start Page
637
End Page
642
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/119755
DOI
10.1016/j.orgel.2009.02.017
ISSN
1566-1199
Abstract
The energy level alignment and chemical reaction at the interface between the hole injection and transport layers in an organic light-emitting diode (OLED) structure has been studied using in-situ X-ray and ultraviolet photoelectron spectroscopy. The hole injection barrier measured by the positions of the highest occupied molecular orbital (HOMO) for N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/indium tin oxide (ITO) was estimated 1.32 eV, while that with a thin WO3 layer inserted between the NPB and ITO was significantly lowered to 0.46 eV. This barrier height reduction is followed by a large work function change which is likely due to the formation of new interface dipole. Upon annealing the WO3 interlayer at 350 degrees C, the reduction of hole injection barrier height largely disappears. This is attributed to a chemical modification occurring in the WO3 such as oxygen vacancy formation. (C) 2009 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE