Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

OsFCA Transcripts Show More Complex Alternative Processing Patterns than its Arabidopsis Counterparts

Authors
Jang, Yun HeeLee, Jeong HwanPark, Hyo-YoungKim, Soon-KapLee, Bo-YoungSuh, Mi ChungKim, Jeong-Kook
Issue Date
Apr-2009
Publisher
SPRINGER HEIDELBERG
Keywords
OsFCA; Alternatively spliced transcripts; Flowering time; Rice
Citation
JOURNAL OF PLANT BIOLOGY, v.52, no.2, pp.161 - 166
Indexed
SCIE
SCOPUS
KCI
Journal Title
JOURNAL OF PLANT BIOLOGY
Volume
52
Number
2
Start Page
161
End Page
166
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/120277
DOI
10.1007/s12374-009-9018-x
ISSN
1226-9239
Abstract
The FCA gene, which is a component of the autonomous pathway that regulates flowering time, is an important example of how alternative processing can control plant development. We have previously characterized the FCA homolog, OsFCA, from a japonica-type rice cultivar and demonstrated that the polyadenylation site within intron 3, which can generate non-functional FCA-beta, was conserved in rice. In this study, we detected five alternatively processed variants of OsFCA pre-mRNA, four of which were equivalents of FCA-alpha, -beta, -gamma, and -delta, in japonica-type Korean rice cultivars. The fifth transcript, referred to as OsFCA-E >, was similar to OsFCA-gamma, except a part of the OsFCA intron 16 was retained. Unlike the FCA-gamma protein, the OsFCA-gamma protein contains a glycine-rich region at its N-terminus. We detected the OsFCA transcripts missing the region encoding the glycine-rich domain in the indica-type rice, but not in the japonica-type rice. We also found that the OsFCA-delta and OsFCA-E > transcripts were expressed in almost all of the different tissue types examined. Taken together, these results indicate that the alternative processing of the OsFCA transcript is more complex than its Arabidopsis counterpart.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Jeong Kook photo

KIM, Jeong Kook
Department of Life Sciences
Read more

Altmetrics

Total Views & Downloads

BROWSE