Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Are Drop-Impact Phenomena Described by Rayleigh-Taylor or Kelvin-Helmholtz Theory?

Authors
Yoon, Sam S.Jepsen, Richard A.James, Scott C.Liu, JieAguilar, Guillermo
Issue Date
2009
Publisher
TAYLOR & FRANCIS INC
Keywords
Drop impact; Finger instability; Kelvin-Helmholtz; Rayleigh-Taylor; Splash
Citation
DRYING TECHNOLOGY, v.27, no.3, pp.316 - 321
Indexed
SCIE
SCOPUS
Journal Title
DRYING TECHNOLOGY
Volume
27
Number
3
Start Page
316
End Page
321
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/120916
DOI
10.1080/07373930802682858
ISSN
0737-3937
Abstract
Drop impact, spreading, fingering, and snap-off are important inmany engineering applications such as spray drying, industrial painting, environmentally friendly combustion, inkjet printing, materials processing, fire suppression, and pharmaceutical coating. Controlling drop-impact instability is crucial to designing optimized systems for the aforementioned applications. Classical Rayleigh-Taylor (RT) theory has been widely used to analyze fingering where instabilities at the leading edge of the toroidal ring form fingers that may ultimately snap off to form small droplets. In this study, we demonstrate the inapplicability of RT theory, in particular because it fails to explain the stable regimes observed under conditions of low air density and the instabilities observed when a drop impacts a pool of equal-density fluid. Specifically, finger instability decreases with decreasing air density, whereas the RT theory suggests that instability should remain unchanged. Moreover, experiments show that fingers form upon impact of a dyed water drop with a water pool, whereas the RT theory predicts noinstability when the densities of the two interacting fluids are equal. Experimental evidence is instead consistent with instability predictions made using the shear-driven Kelvin-Helmholtz theory.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE