음악 추천을 위한 감정 전이 모델 기반의 음악 분류 기법Emotion Transition Model based Music Classification Scheme for Music Recommendation
- Other Titles
- Emotion Transition Model based Music Classification Scheme for Music Recommendation
- Authors
- 한병준; 황인준
- Issue Date
- 2009
- Publisher
- 한국전기전자학회
- Keywords
- Music classification; emotion state transition model; musical feature extraction; SVM
- Citation
- 전기전자학회논문지, v.13, no.2, pp.159 - 166
- Indexed
- KCI
- Journal Title
- 전기전자학회논문지
- Volume
- 13
- Number
- 2
- Start Page
- 159
- End Page
- 166
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/121581
- ISSN
- 1226-7244
- Abstract
- 최근까지 장르나 무드 등의 정적 분류 기술자를 이용한 음악 정보 검색에 관한 다양한 연구가 진행되어 왔다. 정적 분류 기술자는 주로 음악의 다양한 내용적 특징에 기반하기 때문에 그러한 특징에 유사한 음악을 검색하는 데 효과적이다. 하지만 음악을 들었을 때 느끼게 되는 감정 내지 기분 전이를 이용하면 정적 분류 기술자보다 더 효과적이고 정교한 검색이 가능하다. 사람이 음악을 들었을 때 발생하는 감정 전이의 효과에 관한 연구는 현재까지 미비한 실정이다. 감정 전이의 효과를 체계적으로 표현할 수 있다면 기존의 음악 분류에 의한 검색에 비해 음악 추천 등의 새로운 응용에서 더 효과적인 개인화 서비스를 제공할 수 있다. 본 논문에서는 음악에 의한 인간 감정 전이를 표현하기 위한 감정 상태 전이 모델을 제안하고 이를 기반으로 새로운 음악 분류 및 추천 기법을 제안한다. 제안하는 모델의 개발을 위하여 다양한 내용 기반의 특징을 추출하였으며, 고차원 특징 벡터의 차원 감쇄를 위하여 NMF (Non-negative Matrix Factorization)를 사용하였다. 성능 분석을 위한 실험에서 SVM (Support Vector Machine)을 분류기로 사용한 실험에서 평균 67.54%, 최대 87.78%의 분류 정확도를 달성하였다.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.