Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comparison of the effects of 40% oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts

Authors
Oh, SangnamLee, EunilLee, JoohyunLim, YongchulKim, JoonheeWoo, Samyong
Issue Date
Dec-2008
Publisher
SPRINGER
Keywords
Hyperbaric oxygenation; Atmospheric pressure; Hyperoxia; Stress-induced premature senescence; Heat shock protein; Microarray; Real time RT-PCR
Citation
CELL STRESS & CHAPERONES, v.13, no.4, pp.447 - 458
Indexed
SCIE
SCOPUS
Journal Title
CELL STRESS & CHAPERONES
Volume
13
Number
4
Start Page
447
End Page
458
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/122346
DOI
10.1007/s12192-008-0041-5
ISSN
1355-8145
Abstract
The pressure during hyperbaric oxygen treatment may increase oxygen toxicity via an augmented oxygen pressure in the gas. Nevertheless, only a few reports have been published on the effect of cells grown under 2 atmospheric absolute (ATA) pressure. To evaluate the effect of pressure on oxygen toxicity and to study effects in addition to oxygen toxicity, we designed an experiment to compare the effects of normobaric mild hyperoxia (NMH, 40% oxygen) and hyperbaric air condition (HA, air with 2 ATA) on human diploid fibroblasts (HDF) in a hyperbaric incubator. HDFs in both the NMH and the HA condition had a similar oxidative stress response and exhibited premature senescence. To investigate differences in gene profiling in cells grown in the NMH and HA conditions, samples from cells exposed to each condition were applied to microarrays. We found no expression difference in genes related to aging and deoxyribonucleic acid damage, but the expression of genes including cell adhesion, stress response, and transcription were significantly increased in fibroblasts that were responsive to pressure. Among 26 statistically reliable genes, the expression of apoptosis related genes such as ADAM22, Bax, BCL2L14, and UBD, as well as tumor suppressor-related genes like Axin2 and ATF, and also mitogen-activated protein kinase-related genes like mitogen-activated protein kinase kinase kinase 1, histamine receptor, and RAB24, were significantly changed in cells responsive to pressure-induced oxidative stress.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE