Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses

Authors
Ko, JWKim, SHChung, HSKim, KHan, KHKim, HJun, HJKaang, BKKim, EJ
Issue Date
20-Apr-2006
Publisher
CELL PRESS
Keywords
CELLBIO; DEVBIO; MOLNEURO
Citation
NEURON, v.50, no.2, pp.233 - 245
Indexed
SCIE
SCOPUS
Journal Title
NEURON
Volume
50
Number
2
Start Page
233
End Page
245
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/123139
DOI
10.1016/j.neuron.2006.04.005
ISSN
0896-6273
Abstract
Synaptic cell adhesion molecules (CAMs) are known to play key roles in various aspects of synaptic structures and functions, including early differentiation, maintenance, and plasticity. We herein report the identification of a family of cell adhesion-like molecules termed SALM that interacts with the abundant postsynaptic density (PSD) protein PSD-95. SALM2, a SALM isoform, distributes to excitatory, but not inhibitory, synaptic sites. Overexpression of SALM2 increases the number of excitatory synapses and dendritic spines. Mislocalized expression of SALM2 disrupts excitatory synapses and dendritic spines. Bead-induced direct aggregation of SALM2 results in coclustering of PSD-95 and other postsynaptic proteins, including GKAP and AMPA receptors. Knockdown of SALM2 by RNA interference reduces the number of excitatory synapses and dendritic spines and the frequency, but not amplitude, of miniature excitatory postsynaptic currents. These results suggest that SALM2 is an important regulator of the differentiation of excitatory synapses.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE