Magneto-transport properties of a GaMnAs-based ferromagnetic semiconductor trilayer structure grown on a ZnMnSe buffer
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chung, S. J. | - |
dc.contributor.author | Shin, D. Y. | - |
dc.contributor.author | Kim, Hyungchan | - |
dc.contributor.author | Lee, Sanghoon | - |
dc.contributor.author | Liu, X. | - |
dc.contributor.author | Furdyna, J. K. | - |
dc.date.accessioned | 2021-09-09T07:56:33Z | - |
dc.date.available | 2021-09-09T07:56:33Z | - |
dc.date.created | 2021-06-10 | - |
dc.date.issued | 2008-06 | - |
dc.identifier.issn | 0361-5235 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/123479 | - |
dc.description.abstract | Magneto-transport properties have been investigated in a ferromagnetic GaMnAs/GaAlAs/GaMnAs semiconductor trilayer structure grown on a ZnMnSe buffer layer. The presence of the ZnMnSe buffer leads to the formation of a spin-valve-like structure, which provides the opportunity to investigate spin scattering effects by Hall resistance and magnetoresistance (MR) measurements in the current-in-plane (CIP) configuration. The Curie temperature (T (c)) and coercivity of the bottom GaMnAs layer are observed to be different from those of the top GaMnAs layer due to the proximity effect between the ferromagnetic GaMnAs and paramagnetic ZnMnSe layers. A two-step behavior is observed in the hysteresis loops of the Hall resistance, indicating that the coercive fields are different in the two GaMnAs layers in the trilayer structure. The magnetoresistance (MR) measured simultaneously with the Hall resistance shows a sudden increase in the field region where the magnetization of the two GaMnAs layers is different. Although the MR ratio was observed to be only 0.04% in our trilayer structure (due to the experimental CIP configuration), the study clearly demonstrates the presence of spin scattering in a trilayer ferromagnetic semiconductor structure grown on a ZnMnSe buffer. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER | - |
dc.subject | (GA,MN)AS | - |
dc.subject | TEMPERATURE | - |
dc.subject | FIELD | - |
dc.title | Magneto-transport properties of a GaMnAs-based ferromagnetic semiconductor trilayer structure grown on a ZnMnSe buffer | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Lee, Sanghoon | - |
dc.identifier.doi | 10.1007/s11664-008-0391-x | - |
dc.identifier.scopusid | 2-s2.0-42449106905 | - |
dc.identifier.wosid | 000255058700017 | - |
dc.identifier.bibliographicCitation | JOURNAL OF ELECTRONIC MATERIALS, v.37, no.6, pp.912 - 916 | - |
dc.relation.isPartOf | JOURNAL OF ELECTRONIC MATERIALS | - |
dc.citation.title | JOURNAL OF ELECTRONIC MATERIALS | - |
dc.citation.volume | 37 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 912 | - |
dc.citation.endPage | 916 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | (GA,MN)AS | - |
dc.subject.keywordPlus | TEMPERATURE | - |
dc.subject.keywordPlus | FIELD | - |
dc.subject.keywordAuthor | GaMnAs | - |
dc.subject.keywordAuthor | TMR | - |
dc.subject.keywordAuthor | proximity effect | - |
dc.subject.keywordAuthor | trilayer | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.