Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Object tracking with probabilistic Hausdorff distance matching

Authors
Park, SCLee, SW
Issue Date
2005
Publisher
SPRINGER-VERLAG BERLIN
Citation
ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, v.3644, pp.233 - 242
Indexed
SCIE
SCOPUS
Journal Title
ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS
Volume
3644
Start Page
233
End Page
242
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/123582
ISSN
0302-9743
Abstract
This paper proposes a new method of extracting and tracking a nonrigid object moving while allowing camera movement. For object extraction we first detect an object using watershed segmentation technique and then extract its contour points by approximating the boundary using the idea of feature point weighting. For object tracking we take the contour to estimate its motion in the next frame by the maximum likelihood method. The position of the object is estimated using a probabilistic Hausdorff measurement while the shape variation is modelled using a modified active contour model. The proposed method is highly tolerant to occlusion. Because the tracking result is stable unless an object is fully occluded during tracking, the proposed method can be applied to various applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seong Whan photo

Lee, Seong Whan
인공지능학과
Read more

Altmetrics

Total Views & Downloads

BROWSE