Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

OutlierD: an R package for outlier detection using quantile regression on mass spectrometry data

Authors
Cho, HyungJunKim, Yang-JinJung, Hee JungLee, Sang-WonLee, Jae Won
Issue Date
3월-2008
Publisher
OXFORD UNIV PRESS
Citation
BIOINFORMATICS, v.24, no.6, pp.882 - 884
Indexed
SCIE
SCOPUS
Journal Title
BIOINFORMATICS
Volume
24
Number
6
Start Page
882
End Page
884
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/123983
DOI
10.1093/bioinformatics/btn012
ISSN
1367-4803
Abstract
It is important to preprocess high-throughput data generated from mass spectrometry experiments in order to obtain a successful proteomics analysis. Outlier detection is an important preprocessing step. A naive outlier detection approach may miss many true outliers and instead select many non-outliers because of the heterogeneity of the variability observed commonly in high-throughput data. Because of this issue, we developed a outlier detection software program accounting for the heterogeneous variability by utilizing linear, non-linear and non-parametric quantile regression techniques. Our program was developed using the R computer language. As a consequence, it can be used interactively and conveniently in the R environment.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Political Science & Economics > Department of Statistics > 1. Journal Articles
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHO, HYUNG JUN photo

CHO, HYUNG JUN
정경대학 (통계학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE