Dual heuristic programming based nonlinear optimal control for a synchronous generator
- Authors
- Park, Jung-Wook; Harley, Ronald G.; Venayagamoorthy, Ganesh K.; Jang, Gilsoo
- Issue Date
- 2월-2008
- Publisher
- PERGAMON-ELSEVIER SCIENCE LTD
- Keywords
- adaptive critic designs; dual heuristic programming Optimal control; power system stabilizer; radial basis function neural network; synchronous generator
- Citation
- ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, v.21, no.1, pp.97 - 105
- Indexed
- SCIE
SCOPUS
- Journal Title
- ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
- Volume
- 21
- Number
- 1
- Start Page
- 97
- End Page
- 105
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/124195
- DOI
- 10.1016/j.engappai.2007.03.001
- ISSN
- 0952-1976
- Abstract
- This paper presents the design of an infinite horizon nonlinear optimal neurocontroller that replaces the conventional automatic voltage regulator and the turbine governor (CONVC) for the control of a synchronous generator connected to an electric power grid. The neurocontroller design uses the novel optimization neuro-dynamic programming algorithm based on dual heuristic programming (DHP), which has the most robust control capability among the adaptive critic designs family. The radial basis function neural network (RBFNN) is used as the function approximator to implement the DHP technique. The DHP based optimal neurocontroller (DHPNC) using the RBFNN shows improved dynamic damping compared to the CONVC even when a power system stabilizer is added. Also, the DHPNC provides a robust feedback loop in real-time operation without the need for continual on-line training, thus reducing any risk of possible instability associated with the neural network based controllers. (c) 2007 Elsevier Ltd. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.