Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: Evidence for a Mott transition

Authors
Kim, D. S.Kim, Y. H.Lee, C. E.Kim, Y. T.
Issue Date
Nov-2006
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW B, v.74, no.17
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL REVIEW B
Volume
74
Number
17
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/125921
DOI
10.1103/PhysRevB.74.174430
ISSN
2469-9950
Abstract
The resistive switching characteristics of Au/Pr0.7Ca0.3MnO3(PCMO)/Pt sandwich structure were investigated by changing growth temperature of the PCMO film, adding an oxygen annealing process, and modifying the Au/PCMO/Pt sandwich structure by inserting a PrMnO3 (PMO) or CaMnO3 (CMO) layer at the Au/PCMO interface. From these experiments, we obtained the following results. First, only crystalline PCMO films exhibited reversible resistive switching behavior in Au/PCMO/Pt sandwich structure. Secondly, the Mn4+/Mn3+ ratio at the PCMO surface was changed by oxygen annealing of the PCMO film, resulting in an increase of the resistance ratio of high resistance state and low resistance state. Lastly, we could not observe the resistive switching behavior in Au/PMO/PCMO/Pt and Au/CMO/PCMO/Pt sandwich structures. The resistive switching behavior could be observed only in Au/PCMO/PMO(or CMO)/PCMO/Pt sandwich structure. These results indicate that the resistive switching of Au/PCMO/Pt sandwich structure depends on the mixed valence state Mn4+/Mn3+ of Mn ions in the metal/PCMO interface domains. This result can be regarded as evidence for a Mott transition.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE