Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Fracture Strain Based Numerical Prediction Method For Hydrogen Effect on Fracture Toughness & nbsp;

Full metadata record
DC Field Value Language
dc.contributor.authorYoun, Gyo-Geun-
dc.contributor.authorKim, Yun-Jae-
dc.contributor.authorKim, Jong-Sung-
dc.contributor.authorLam, Poh-Sang-
dc.date.accessioned2021-11-17T03:41:11Z-
dc.date.available2021-11-17T03:41:11Z-
dc.date.created2021-08-30-
dc.date.issued2021-07-15-
dc.identifier.issn0020-7403-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/127711-
dc.description.abstractIn this paper, a finite element (FE) simulation method based on the multi-axial fracture strain model is proposed to predict the effect of hydrogen embrittlement on fracture toughness and is applied to test data on conventionally forged (CF) 21-6-9 stainless steel. For the uncharged material, the damage model parameters are determined from the tensile and fracture toughness test results. A hydrogen-embrittlement constant is introduced to modify the multi-axial fracture strain for hydrogen-charged materials. The predicted fracture toughness results using the modified multi-axial fracture strain agree closely with the experimental data of CF 21-6-9 stainless steel precharged at two different hydrogen concentrations, 78 and 210 wppm.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectSTRESS-CORROSION CRACKING-
dc.subjectEMBRITTLEMENT PROPERTIES-
dc.subjectDUCTILE FRACTURE-
dc.subjectSTAINLESS-STEELS-
dc.subjectSIMULATION-
dc.subjectFATIGUE-
dc.subjectFAILURE-
dc.subjectGROWTH-
dc.subjectPIPES-
dc.subjectMODEL-
dc.titleA Fracture Strain Based Numerical Prediction Method For Hydrogen Effect on Fracture Toughness & nbsp;-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Yun-Jae-
dc.identifier.doi10.1016/j.ijmecsci.2021.106492-
dc.identifier.scopusid2-s2.0-85110307204-
dc.identifier.wosid000663836000005-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, v.202-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES-
dc.citation.titleINTERNATIONAL JOURNAL OF MECHANICAL SCIENCES-
dc.citation.volume202-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusSTRESS-CORROSION CRACKING-
dc.subject.keywordPlusEMBRITTLEMENT PROPERTIES-
dc.subject.keywordPlusDUCTILE FRACTURE-
dc.subject.keywordPlusSTAINLESS-STEELS-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusFATIGUE-
dc.subject.keywordPlusFAILURE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusPIPES-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorhydrogen-embrittlement effect-
dc.subject.keywordAuthorfracture toughness-
dc.subject.keywordAuthorfinite element damage analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Jae photo

Kim, Yun Jae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE