Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Recent Advances in Heterostructured Anode Materials with Multiple Anions for Advanced Alkali-Ion Batteries

Authors
Park, Gi DaePark, Jin-SungKim, Jin KooKang, Yun Chan
Issue Date
7월-2021
Publisher
WILEY-V C H VERLAG GMBH
Keywords
alkali-ion batteries; anode materials; electrochemical reactions; heterostructure; multiple anions
Citation
ADVANCED ENERGY MATERIALS, v.11, no.27
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED ENERGY MATERIALS
Volume
11
Number
27
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/127805
DOI
10.1002/aenm.202003058
ISSN
1614-6832
Abstract
As rechargeable battery technology continues to advance, the development of advanced electrode materials is becoming increasingly crucial to meet the emerging demand for electrochemical energy storage devices with higher energy and power densities. However, progress in anode materials has been sluggish and graphite is still widely applied in commercial rechargeable batteries. Alloying and conversion reaction-based anode materials, including Si, Sn, metal oxides, and metal chalcogenides, have been widely investigated as they exhibit much higher theoretical capacities than carbonaceous materials. However, they exhibit several intrinsic limitations, such as large volume change, low electrical conductivity, and high voltage hysteresis. Recently, the construction of heterostructures for anode materials has received increasing attention as it is an effective strategy to greatly enhance the capacity and rate performance by forming built-in electric fields at the heterointerfaces, which can lower the activation energy for surface reactions. This review introduces the recent progress in the development of heterostructured anode materials with an emphasis on metal compounds with multiple anions and various interpretations of the origin of their superior electrochemical properties in rechargeable alkali-ions (Li+, Na+, and K+) batteries. The challenges and future outlook of advanced heterostructured anode materials research are discussed at the end of this review.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE