Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An efficient stabilized multiple auxiliary variables method for the Cahn-Hilliard-Darcy two-phase flow system

Authors
Yang, JunxiangKim, Junseok
Issue Date
15-6월-2021
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Efficient S-MSAV approach; Cahn-Hilliard-Darcy system; Second-order accuracy; Decoupled scheme
Citation
COMPUTERS & FLUIDS, v.223
Indexed
SCIE
SCOPUS
Journal Title
COMPUTERS & FLUIDS
Volume
223
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/127844
DOI
10.1016/j.compfluid.2021.104948
ISSN
0045-7930
Abstract
Herein, we develop a totally decoupled, linear, and temporally second-order accurate numerical scheme for the Cahn-Hilliard-Darcy system which models the two-phase incompressible fluid flows in porous medium or in Hele-Shaw cells. Our proposed scheme is based on a simple and efficient stabilized multiple scalar auxiliary variables (S-MSAV) approach. Two time-dependent variables are defined to change the original governing equations to be the equivalent forms and then the Crank-Nicolson type approximation and the explicit Adams-Bashforth approximation are used to temporally discretize the equivalent equations. All nonlinear parts and auxiliary variables are explicitly treated, thus we can decouple the phase-field variable and auxiliary variables in time. The velocity and pressure are decoupled by using a second-order accurate pressure correction method. Therefore, our numerical scheme is very simple and efficient. We analytically prove the discrete energy dissipation law and unique solvability of our scheme with the absence of external force. The benchmark tests are performed to show that our method has desired accuracy and energy stability. Moreover, our method works well in simulating buoyancy-driven pinchoff and viscous fingering. (C) 2021 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE