Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ruderman-Kittel-Kasuya-Yosida-type interfacial Dzyaloshinskii-Moriya interaction in heavy metal/ferromagnet heterostructures

Authors
Kim, TaehyunCha, In HoKim, Yong JinKim, Gyu WonStashkevich, AndreyRoussigne, YvesBelmeguenai, MohamedCherif, Salim M.Samardak, Alexander S.Kim, Young Keun
Issue Date
2-Jun-2021
Publisher
NATURE RESEARCH
Citation
NATURE COMMUNICATIONS, v.12, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
12
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/127869
DOI
10.1038/s41467-021-23586-y
ISSN
2041-1723
Abstract
The manipulation of magnetization with interfacial modification using various spin-orbit coupling phenomena has been recently revisited due to its scientific and technological potential for next-generation memory devices. Herein, we experimentally and theoretically demonstrate the interfacial Dzyaloshinskii-Moriya interaction characteristics penetrating through a MgO dielectric layer inserted between the Pt and CoFeSiB. The inserted MgO layer seems to function as a chiral exchange interaction mediator of the interfacial Dzyaloshinskii-Moriya interaction from the heavy metal atoms to ferromagnet ones. The potential physical mechanism of the anti-symmetric exchange is based on the tunneling-like behavior of conduction electrons through the semi-conductor-like ultrathin MgO. Such behavior can be correlated with the oscillations of the indirect exchange coupling of the Ruderman-Kittel-Kasuya-Yosida type. From the theoretical demonstration, we could provide approximate estimation and show qualitative trends peculiar to the system under investigation. The mechanism of the interfacial Dzyaloshinskii-Moriya interaction in heavy metal-ferromagnet heterostructures is debated. Here, the authors show the oscillating behaviour of the interaction as a function of the MgO spacer layer thickness, supporting the interlayer exchange coupling mechanism of the Ruderman-Kittel-Kasuya-Yosida type.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Keun photo

Kim, Young Keun
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE