Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Large-scale synthesis of atomically thin ultrawide bandgap beta-Ga2O3 using a liquid gallium squeezing technique

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Hyunik-
dc.contributor.authorChoi, Yongha-
dc.contributor.authorYang, Sujung-
dc.contributor.authorBae, Jinho-
dc.contributor.authorKim, Jihyun-
dc.date.accessioned2021-11-21T03:40:28Z-
dc.date.available2021-11-21T03:40:28Z-
dc.date.created2021-08-30-
dc.date.issued2021-05-
dc.identifier.issn0734-2101-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128189-
dc.description.abstractbeta-Ga2O3, an emerging ultrawide bandgap (UWBG) semiconductor, offers promising properties for next-generation power electronics, chemical sensors, and solar-blind optoelectronics. Scaling down of beta-Ga2O3 to the atomic level affords the advantages of two-dimensional (2D) materials, while maintaining the inherent properties of the parent bulk counterpart. Here, we demonstrate a simple approach to synthesize ultrathin millimeter-size beta-Ga2O3 sheets using a liquid gallium squeezing technique. The GaOx nanolayer produced by stamping liquid gallium under the Cabrera-Mott oxidation was converted into few-atom-thick beta-Ga2O3 via thermal annealing under atmospheric conditions. This approach was also applied to various substrates such as SiO2, Si, graphene, quartz, and sapphire to heteroepitaxially synthesize 2D beta-Ga2O3 on a target substrate. Finally, we propose a patterning strategy combining the squeezing technique with conventional lithography to obtain a beta-Ga2O3 layer with a controllable thickness and shape. Our synthetic method has the potential to overcome the limitations of conventional beta-Ga2O3 growth methods, paving a path for applications in UWBG-based (opto-)electronics with a high throughput in a cost-effective manner.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherA V S AMER INST PHYSICS-
dc.titleLarge-scale synthesis of atomically thin ultrawide bandgap beta-Ga2O3 using a liquid gallium squeezing technique-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jihyun-
dc.identifier.doi10.1116/6.0000927-
dc.identifier.scopusid2-s2.0-85103438231-
dc.identifier.wosid000635267100001-
dc.identifier.bibliographicCitationJOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, v.39, no.3-
dc.relation.isPartOfJOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-
dc.citation.titleJOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-
dc.citation.volume39-
dc.citation.number3-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE