Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development and operation of a digital platform for sharing pathology image data

Authors
Kang, YunsookKim, Yoo JungPark, SeongkeunRo, GunHong, ChoyeonJang, HyungjoonCho, SungdukHong, Won JaeKang, Dong UnChun, JonghoonLee, KyoungbunKang, Gyeong HoonMoon, Kyoung ChulChoe, GheeyoungLee, Kyu SangPark, Jeong HwanJeong, Won-KiChun, Se YoungPark, PeomChoi, Jinwook
Issue Date
3-4월-2021
Publisher
BMC
Keywords
Digital pathology; Open platform; Artificial intelligence-assisted annotation; Medical image dataset
Citation
BMC MEDICAL INFORMATICS AND DECISION MAKING, v.21, no.1
Indexed
SCIE
SCOPUS
Journal Title
BMC MEDICAL INFORMATICS AND DECISION MAKING
Volume
21
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/128263
DOI
10.1186/s12911-021-01466-1
ISSN
1472-6947
Abstract
BackgroundArtificial intelligence (AI) research is highly dependent on the nature of the data available. With the steady increase of AI applications in the medical field, the demand for quality medical data is increasing significantly. We here describe the development of a platform for providing and sharing digital pathology data to AI researchers, and highlight challenges to overcome in operating a sustainable platform in conjunction with pathologists. MethodsOver 3000 pathological slides from five organs (liver, colon, prostate, pancreas and biliary tract, and kidney) in histologically confirmed tumor cases by pathology departments at three hospitals were selected for the dataset. After digitalizing the slides, tumor areas were annotated and overlaid onto the images by pathologists as the ground truth for AI training. To reduce the pathologists' workload, AI-assisted annotation was established in collaboration with university AI teams. ResultsA web-based data sharing platform was developed to share massive pathological image data in 2019. This platform includes 3100 images, and 5 pre-processing algorithms for AI researchers to easily load images into their learning models. DiscussionDue to different regulations among countries for privacy protection, when releasing internationally shared learning platforms, it is considered to be most prudent to obtain consent from patients during data acquisition.ConclusionsDespite limitations encountered during platform development and model training, the present medical image sharing platform can steadily fulfill the high demand of AI developers for quality data. This study is expected to help other researchers intending to generate similar platforms that are more effective and accessible in the future.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Computer Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE