Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Transcriptomic Changes Induced by Deletion of Transcriptional Regulator GCR2 on Pentose Sugar Metabolism in Saccharomyces cerevisiae

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Minhye-
dc.contributor.authorPark, Heeyoung-
dc.contributor.authorKim, Sooah-
dc.contributor.authorOh, Eun Joong-
dc.contributor.authorJeong, Deokyeol-
dc.contributor.authorFlorencia, Clarissa-
dc.contributor.authorKim, Kyoung Heon-
dc.contributor.authorJin, Yong-Su-
dc.contributor.authorKim, Soo Rin-
dc.date.accessioned2021-11-22T18:40:52Z-
dc.date.available2021-11-22T18:40:52Z-
dc.date.created2021-08-30-
dc.date.issued2021-03-25-
dc.identifier.issn2296-4185-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128386-
dc.description.abstractBeing a microbial host for lignocellulosic biofuel production, Saccharomyces cerevisiae needs to be engineered to express a heterologous xylose pathway; however, it has been challenging to optimize the engineered strain for efficient and rapid fermentation of xylose. Deletion of PHO13 (Delta pho13) has been reported to be a crucial genetic perturbation in improving xylose fermentation. A confirmed mechanism of the Delta pho13 effect on xylose fermentation is that the Delta pho13 transcriptionally activates the genes in the non-oxidative pentose phosphate pathway (PPP). In the current study, we found a couple of engineered strains, of which phenotypes were not affected by Delta pho13 (Delta pho13-negative), among many others we examined. Genome resequencing of the Delta pho13-negative strains revealed that a loss-of-function mutation in GCR2 was responsible for the phenotype. Gcr2 is a global transcriptional factor involved in glucose metabolism. The results of RNA-seq confirmed that the deletion of GCR2 (Delta gcr2) led to the upregulation of PPP genes as well as downregulation of glycolytic genes, and changes were more significant under xylose conditions than those under glucose conditions. Although there was no synergistic effect between Delta pho13 and Delta gcr2 in improving xylose fermentation, these results suggested that GCR2 is a novel knockout target in improving lignocellulosic ethanol production.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherFRONTIERS MEDIA SA-
dc.titleTranscriptomic Changes Induced by Deletion of Transcriptional Regulator GCR2 on Pentose Sugar Metabolism in Saccharomyces cerevisiae-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Kyoung Heon-
dc.identifier.doi10.3389/fbioe.2021.654177-
dc.identifier.scopusid2-s2.0-85103896694-
dc.identifier.wosid000637733700001-
dc.identifier.bibliographicCitationFRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, v.9-
dc.relation.isPartOfFRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY-
dc.citation.titleFRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY-
dc.citation.volume9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordAuthorlignocellulosic biomass-
dc.subject.keywordAuthoryeast metabolic engineering-
dc.subject.keywordAuthortranscriptomics-
dc.subject.keywordAuthorglucose repression-
dc.subject.keywordAuthorGCR2-
dc.subject.keywordAuthorpentose phosphate pathway-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Food Bioscience and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kyoung Heon photo

Kim, Kyoung Heon
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE