Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Concurrent Vacancy and Adatom Defects of Mo1-xNbxSe2 Alloy Nanosheets Enhance Electrochemical Performance of Hydrogen Evolution Reaction

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Ik Seon-
dc.contributor.authorKwak, In Hye-
dc.contributor.authorKim, Ju Yeon-
dc.contributor.authorDebela, Tekalign Terfa-
dc.contributor.authorPark, Yun Chang-
dc.contributor.authorPark, Jeunghee-
dc.contributor.authorKang, Hong Seok-
dc.date.accessioned2021-11-22T20:40:18Z-
dc.date.available2021-11-22T20:40:18Z-
dc.date.created2021-08-30-
dc.date.issued2021-03-23-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128393-
dc.description.abstractEarth-abundant transition metal dichalcogenide nanosheets have emerged as an excellent catalyst for electrochemical water splitting to generate H-2. Alloying the nanosheets with heteroatoms is a promising strategy to enhance their catalytic performance. Herein, we synthesized hexagonal (2H) phase Mo1-xNbxSe2 nanosheets over the whole composition range using a solvothermal reaction. Alloying results in a variety of atomic-scale crystal defects such as Se vacancies, metal vacancies, and adatoms. The defect content is maximized when x approaches 0.5. Detailed structure analysis revealed that the NbSe2 bonding structures in the alloy phase are more disordered than the MoSe2 ones. Compared to MoSe2 and NbSe2, Mo0.5Nb0.5Se2 exhibits much higher electrocatalytic performance for hydrogen evolution reaction. First-principles calculation was performed for the formation energy in the models for vacancies and adatoms, supporting that the alloy phase has more defects than either NbSe2 or MoSe2. The calculation predicted that the separated NbSe2 domain at x = 0.5 favors the concurrent formation of Nb/Se vacancies and adatoms in a highly cooperative way. Moreover, the Gibbs free energy along the reaction path suggests that the enhanced HER performance of alloy nanosheets originates from the higher concentration of defects that favor H atom adsorption.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.titleConcurrent Vacancy and Adatom Defects of Mo1-xNbxSe2 Alloy Nanosheets Enhance Electrochemical Performance of Hydrogen Evolution Reaction-
dc.typeArticle-
dc.contributor.affiliatedAuthorKwak, In Hye-
dc.contributor.affiliatedAuthorPark, Jeunghee-
dc.identifier.doi10.1021/acsnano.1c00171-
dc.identifier.scopusid2-s2.0-85103444553-
dc.identifier.wosid000634569100153-
dc.identifier.bibliographicCitationACS NANO, v.15, no.3, pp.5467 - 5477-
dc.relation.isPartOfACS NANO-
dc.citation.titleACS NANO-
dc.citation.volume15-
dc.citation.number3-
dc.citation.startPage5467-
dc.citation.endPage5477-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordAuthorMoSe2-
dc.subject.keywordAuthorNbSe2-
dc.subject.keywordAuthorvacancy and adatom defects-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthorfirst-principles calculation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Jeung Hee photo

Park, Jeung Hee
신소재화학과
Read more

Altmetrics

Total Views & Downloads

BROWSE