Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structural Insights into a Bifunctional Peptide Methionine Sulfoxide Reductase MsrA/B Fusion Protein from Helicobacter pylori

Authors
Kim, SulheeLee, KitaikPark, Sun-HaKwak, Geun-HeeKim, Min SeokKim, Hwa-YoungHwang, Kwang Yeon
Issue Date
3월-2021
Publisher
MDPI
Keywords
MsrAB; fusion protein; linker region; catalytic efficiency
Citation
ANTIOXIDANTS, v.10, no.3, pp.1 - 13
Indexed
SCIE
SCOPUS
Journal Title
ANTIOXIDANTS
Volume
10
Number
3
Start Page
1
End Page
13
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/128468
DOI
10.3390/antiox10030389
ISSN
2076-3921
Abstract
Methionine sulfoxide reductase (Msr) is a family of enzymes that reduces oxidized methionine and plays an important role in the survival of bacteria under oxidative stress conditions. MsrA and MsrB exist in a fusion protein form (MsrAB) in some pathogenic bacteria, such as Helicobacter pylori (Hp), Streptococcus pneumoniae, and Treponema denticola. To understand the fused form instead of the separated enzyme at the molecular level, we determined the crystal structure of HpMsrAB(C44S/C318S) at 2.2 angstrom, which showed that a linker region (Hpiloop, 193-205) between two domains interacted with each HpMsrA or HpMsrB domain via three salt bridges (E193-K107, D197-R103, and K200-D339). Two acetate molecules in the active site pocket showed an sp(2) planar electron density map in the crystal structure, which interacted with the conserved residues in fusion MsrABs from the pathogen. Biochemical and kinetic analyses revealed that Hpiloop is required to increase the catalytic efficiency of HpMsrAB. Two salt bridge mutants (D193A and E199A) were located at the entrance or tailgate of Hpiloop. Therefore, the linker region of the MsrAB fusion enzyme plays a key role in the structural stability and catalytic efficiency and provides a better understanding of why MsrAB exists in a fused form.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Kwang Yeon photo

Hwang, Kwang Yeon
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE