Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A General Solution to Mitigate Water Poisoning of Oxide Chemiresistors: Bilayer Sensors with Tb4O7 Overlayer

Authors
Jeong, Seong-YongMoon, Young KookKim, Jin KooPark, Sei-WoongJo, Yong KunKang, Yun ChanLee, Jong-Heun
Issue Date
Feb-2021
Publisher
WILEY-V C H VERLAG GMBH
Keywords
bilayer sensors; gas sensors; oxide semiconductors; Tb4O7 water poisoning
Citation
ADVANCED FUNCTIONAL MATERIALS, v.31, no.6
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED FUNCTIONAL MATERIALS
Volume
31
Number
6
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/129326
DOI
10.1002/adfm.202007895
ISSN
1616-301X
Abstract
Water poisoning, the dependence of gas-sensing characteristics on moisture, in oxide chemiresistors remains a long-standing challenge. Various approaches are explored to mitigate water poisoning but they are often accompanied by significant deterioration of sensing capabilities such as gas response deterioration, gas selectivity alteration, and sensor resistance increase up to unmeasurable levels. Herein, a novel sensor design with a moisture-blocking Tb4O7 overlayer is suggested as a facile and universal strategy to remove moisture poisoning without sacrificing intrinsic sensing properties. A submicrometer-thick coating of Tb4O7 overlayer on In2O3 sensors effectively eliminates the humidity dependence of the gas-sensing characteristics without significantly altering the gas response, selectivity, and sensor resistance. Furthermore, the general validity of the water-blocking effect using the Tb4O7 overlayer is confirmed in diverse gas sensors using SnO2, ZnO, and Pd/SnO2. The negligible moisture interference of the bilayer sensor is explained in terms of the hydrophobic nature of the Tb4O7 overlayer and the prevention of formation of the -OH radical by the interaction between Tb4O7 and In2O3. A universal solution to design diverse humidity-independent gas sensors with different gas selectivities can open up new pathways toward building accurate and robust gas sensors with new functionalities and high-performance artificial olfaction.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE