Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mapping current profiles of point-contacted graphene devices using single-spin scanning magnetometer

Authors
Lee, M.Jang, S.Jung, W.Lee, Y.Taniguchi, T.Watanabe, K.Kim, H.-R.Park, H.-G.Lee, G.-H.Lee, D.
Issue Date
Jan-2021
Publisher
American Institute of Physics Inc.
Citation
Applied Physics Letters, v.118, no.3
Indexed
SCIE
SCOPUS
Journal Title
Applied Physics Letters
Volume
118
Number
3
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/129367
DOI
10.1063/5.0037899
ISSN
0003-6951
Abstract
We demonstrate two-dimensional mapping of current flow in graphene devices by using a single-spin scanning magnetometer based on a nitrogen-vacancy defect center in diamond. We first image the stray magnetic field generated by the current and then reconstruct the current density map from the field data. We focus on the visualization of current flow around a small sized current source of ∼500 nm diameter, which works as an effective point contact. In this paper, we study two types of point-contacted graphene devices and find that the overall current profiles agree with the expected behavior of electron flow in the diffusive transport regime. This work could offer a route to explore interesting carrier dynamics of graphene including ballistic and hydrodynamic transport regimes. © 2021 Author(s).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE