Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

In-Depth TEM Investigation on Structural Inhomogeneity within a Primary LixNi0.835Co0.15Al0.015O2 Particle: Origin of Capacity Decay during High-Rate Discharge

Authors
Lee, HyesuJo, EunmiChung, Kyung YoonByun, DongjinKim, Seung MinChang, Wonyoung
Issue Date
3-2월-2020
Publisher
WILEY-V C H VERLAG GMBH
Keywords
Ni-rich cathode materials; high-rate discharge; lithium-ion batteries; structural inhomogeneity; TEM depth profiling
Citation
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.59, no.6, pp.2385 - 2391
Indexed
SCIE
SCOPUS
Journal Title
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume
59
Number
6
Start Page
2385
End Page
2391
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/130716
DOI
10.1002/anie.201910670
ISSN
1433-7851
Abstract
The structural stability of cathode materials during electrochemical reactions, in particular, under high-rate discharge, is pertinent to the design and development of new electrode materials. This study investigates the structural inhomogeneity that develops within a single LiNi0.835Co0.15Al0.015O2 (NCA83) particle during a fast discharging process under different cutoff voltages. Some of the NCA83 particles discharged from a high cutoff voltage (4.8 V) developed surface areas in which the layered structure was recovered, although the interiors retained the degraded spinel structure. These micro- and nano-scale structural inversions from high cutoff voltage seem highly correlated with structural evolutions in the initial charged state, and may ultimately degrade the cycling stability. This study advances understanding of the structural inhomogeneity within primary particles during various electrochemical processes and may facilitate the development of new Ni-rich cathode materials.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher BYUN, Dong Jin photo

BYUN, Dong Jin
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE