Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Cloud-Based Mapreduce Workflow Execution Platform

Authors
Jung, In-YongHan, Byong-JohnJeong, Chang-SungRho, Seungmin
Issue Date
11월-2014
Publisher
LIBRARY & INFORMATION CENTER, NAT DONG HWA UNIV
Keywords
Cloud computing; PaaS; Mapreduce workflow; Job scheduling
Citation
JOURNAL OF INTERNET TECHNOLOGY, v.15, no.6, pp.1059 - 1067
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF INTERNET TECHNOLOGY
Volume
15
Number
6
Start Page
1059
End Page
1067
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/133236
DOI
10.6138/JIT.2014.15.6.17
ISSN
1607-9264
Abstract
With increasing demand of data-intensive applications, mapreduce technologies have become useful tools to develop large scale applications efficiently by integrating various existing mapreduce jobs. However, there are few existing researches of workflow systems which can integrates mapreduce jobs with on-demand cloud resource provisioning. In this paper, we present a new cloud-based mapreduce workflow execution platform named DIVE-CWM (Distributed-parallel Virtual Environment on Cloud computing for Workflow for launching Mapreduce jobs) which integrates multiple mapreduce jobs and legacy programs into a single workflow. It provides a transparent and selective job scheduling by estimating the execution time in advance for workflow to execute all its jobs. Also, it supports automatic resource provisioning scheme which offers on-demand VM resources automatically to launch a workflow onto cloud. Furthermore, it provides an agent based resource management for automatic job deployment and execution of workflow on mapreduce clusters. Additionally, service oriented architecture based on web service API and graphical user interface offers high accessibility and convenience to user and other systems. We show the experimental results which compares the different scheduling schemes for various workflows.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jeong, Chang Sung photo

Jeong, Chang Sung
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE