Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Carbon-Coated Three-Dimensional MXene/Iron Selenide Ball with Core-Shell Structure for High-Performance Potassium-Ion Batteries

Authors
Yang, Su HyunLee, Yun JaeKang, HeeminPark, Seung-KeunKang, Yun Chan
Issue Date
12월-2022
Publisher
SHANGHAI JIAO TONG UNIV PRESS
Keywords
MXene; Spray pyrolysis; Iron selenide; Potassium-ion batteries; 3D structures
Citation
NANO-MICRO LETTERS, v.14, no.1
Indexed
SCIE
SCOPUS
Journal Title
NANO-MICRO LETTERS
Volume
14
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/135195
DOI
10.1007/s40820-021-00741-0
ISSN
2311-6706
Abstract
Two-dimensional (2D) MXenes are promising as electrode materials for energy storage, owing to their high electronic conductivity and low diffusion barrier. Unfortunately, similar to most 2D materials, MXene nanosheets easily restack during the electrode preparation, which degrades the electrochemical performance of MXene-based materials. A novel synthetic strategy is proposed for converting MXene into restacking-inhibited three-dimensional (3D) balls coated with iron selenides and carbon. This strategy involves the preparation of Fe2O3@carbon/MXene microspheres via a facile ultrasonic spray pyrolysis and subsequent selenization process. Such 3D structuring effectively prevents interlayer restacking, increases the surface area, and accelerates ion transport, while maintaining the attractive properties of MXene. Furthermore, combining iron selenides and carbon with 3D MXene balls offers many more sites for ion storage and enhances the structural robustness of the composite balls. The resultant 3D structured microspheres exhibit a high reversible capacity of 410 mAh g(-1) after 200 cycles at 0.1 A g(-1) in potassium-ion batteries, corresponding to the capacity retention of 97% as calculated based on 100 cycles. Even at a high current density of 5.0 A g(-1), the composite exhibits a discharge capacity of 169 mAh g(-1).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Hee min photo

Kang, Hee min
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE