Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Emotion Recognition with Short-Period Physiological Signals Using Bimodal Sparse Autoencoders

Authors
Lee, Yun-KyuPae, Dong-SungHong, Dae-KiLim, Myo-TaegKang, Tae-Koo
Issue Date
2022
Publisher
TECH SCIENCE PRESS
Keywords
Emotion recognition; physiological signal; bimodal structure network; stacked sparse autoencoder; EDPE dataset
Citation
INTELLIGENT AUTOMATION AND SOFT COMPUTING, v.32, no.2, pp.657 - 673
Indexed
SCIE
SCOPUS
Journal Title
INTELLIGENT AUTOMATION AND SOFT COMPUTING
Volume
32
Number
2
Start Page
657
End Page
673
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/135369
DOI
10.32604/iasc.2022.020849
ISSN
1079-8587
Abstract
With the advancement of human-computer interaction and artificial intelligence, emotion recognition has received significant research attention. The most commonly used technique for emotion recognition is EEG, which is directly associated with the central nervous system and contains strong emotional features. However, there are some disadvantages to using EEG signals. They require high dimensionality, diverse and complex processing procedures which make real-time computation difficult. In addition, there are problems in data acquisition and interpretation due to body movement or reduced concentration of the experimenter. In this paper, we used photoplethysmography (PPG) and electromyography (EMG) to record signals. Firstly, we segmented the emotion data into 10-pulses during preprocessing to identify emotions with short period signals. These segmented data were input to the proposed bimodal stacked sparse auto-encoder model. To enhance recognition performance, we adopted a bimodal structure to extract shared PPG and EMG representations. This approach provided more detailed arousal-valence mapping compared with the current high/low binary classification. We created a dataset of PPG and EMG signals, called the emotion dataset dividing into four classes to help understand emotion levels. We achieved high performance of 80.18% and 75.86% for arousal and valence, respectively, despite more class classification. Experimental results validated that the proposed method significantly enhanced emotion recognition performance.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Myo taeg photo

Lim, Myo taeg
College of Engineering (School of Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE