Coordinated Trajectory-Tracking Control of a Marine Aerial-Surface Heterogeneous System
- Authors
- Wang, Ning; Ahn, Choon Ki
- Issue Date
- 12월-2021
- Publisher
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Keywords
- Unmanned aerial vehicles; Multi-stage noise shaping; Vehicle dynamics; Trajectory tracking; System dynamics; Mechatronics; IEEE transactions; Accurate trajectory tracking; coordinated trajectory-tracking control (CTTC); finite-time observer; marine aerial-surface heterogeneous (MASH) system
- Citation
- IEEE-ASME TRANSACTIONS ON MECHATRONICS, v.26, no.6, pp.3198 - 3210
- Indexed
- SCIE
SCOPUS
- Journal Title
- IEEE-ASME TRANSACTIONS ON MECHATRONICS
- Volume
- 26
- Number
- 6
- Start Page
- 3198
- End Page
- 3210
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/135618
- DOI
- 10.1109/TMECH.2021.3055450
- ISSN
- 1083-4435
- Abstract
- In this article, for a marine aerial-surface heterogeneous (MASH) system composed by a quadrotor unmanned aerial vehicle (UAV) and an unmanned surface vehicle (USV) with heterogeneity, completely unknown dynamics and disturbances, the accurate trajectory-tracking problem is solved by creating a novel coordinated trajectory-tracking control (CTTC) scheme. A family of coordinate transformations are devised to convert the MASH system tracking error dynamics into translation-rotation cascade manners, whereby the heterogeneity is removed and finite-time observers for complex unknowns are facilitated. In conjunction with sliding mode based rotation error dynamics, distributed tracking controllers for the quadrotor UAV and the USV are independently synthesized such that cascade tracking error dynamics are globally asymptotically stable. With the aid of cascade and Lyapunov analysis, the entire CTTC solution to the accurate trajectory-tracking problem of the MASH system is eventually put forward. Simulation results and comprehensive comparisons on a prototype MASH system demonstrate the effectiveness and superiority of the proposed CTTC scheme.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > School of Electrical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.