Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Strong Fermi-level pinning at metal contacts to halide perovskites

Authors
Hong, KootakKwon, Ki ChangChoi, Kyoung SoonVan Le, QuyetKim, Seung JuHan, Ji SuSuh, Jun MinKim, Soo YoungSutter-Fella, Carolin M.Jang, Ho Won
Issue Date
4-11월-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.9, no.42, pp.15212 - 15220
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
9
Number
42
Start Page
15212
End Page
15220
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/135766
DOI
10.1039/d1tc03370k
ISSN
2050-7526
Abstract
The performance of halide perovskite-based electronic and optoelectronic devices is often related to interfacial charge transport. To shed light on the underlying physical and chemical properties of CH3NH3PbI3 (MAPbI(3)) in direct contact with common electrodes Al, Ti, Cr, Ag, and Au, the evolution of interfacial properties and Fermi level pinning is systematically studied. Given a unique experimental facility, pristine interfaces without any exposure to ambient air were prepared. We observe aggregation of substantial amounts of metallic lead (Pb-0) at the metal/MAPbI(3) interface, resulting from the interfacial reaction between the deposited metal and iodine ions from MAPbI(3). It is found that the Schottky barrier height at the metal/MAPbI(3) interface is independent of the metal work function due to strong Fermi level pinning, possibly due to the metallic Pb-0 aggregates, which act as interfacial trap sites. The charge neutrality level of MAPbI(3) is consistent with the energy level of Pb-0-related defects, indicating that Pb-0 interfacial trap states can be nonradiative recombination sites. This work underlines that control of chemical bonding at interfaces is a key factor for designing future halide perovskite-based devices.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Soo Young photo

Kim, Soo Young
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE