SMARCA4 Depletion Induces Cisplatin Resistance by Activating YAP1-Mediated Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer
- Authors
- Kim, Jihyun; Jang, Gyubeom; Sim, Sung Hoon; Park, In Hae; Kim, Kyungtae; Park, Charny
- Issue Date
- 11월-2021
- Publisher
- MDPI
- Keywords
- Hippo-YAP; SMARCA4; TAZ pathway; cisplatin resistance; epithelial-to-mesenchymal; molecular subtype; triple-negative breast cancer
- Citation
- CANCERS, v.13, no.21
- Indexed
- SCIE
SCOPUS
- Journal Title
- CANCERS
- Volume
- 13
- Number
- 21
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/135862
- DOI
- 10.3390/cancers13215474
- ISSN
- 2072-6694
- Abstract
- Simple Summary:& nbsp;SMARCA4 mutations were over-representative in cisplatin resistance and metastatic triple-negative breast cancer (TNBC). Additionally, SMARCA4 inactivation induced the mesenchymal-like subtype TNBC. The epithelial-to-mesenchymal transition and Hippo-YAP/TAZ pathways were activated in SMARCA4 inactivation samples of both SMARCA4 knockout cell lines and TNBC patients. In SMARCA4 knockout cells, the YAP1 inhibitor verteporfin suppressed YAP1 target genes. This study depicts the clinical importance of SMARCA4 depletion in TNBC and suggests YAP/TAZ as a novel target for cisplatin-resistant patients.<br>The role of SMARCA4, an ATPase subunit of the SWI/SNF chromatin remodeling complex, in genomic organization is well studied in various cancer types. However, its oncogenic role and therapeutic implications are relatively unknown in triple-negative breast cancer (TNBC). We investigated the clinical implication and downstream regulation induced by SMARCA4 inactivation using large-scale genome and transcriptome profiles. Additionally, SMARCA4 was knocked out in MDA-MB-468 and MDA-MB-231 using CRISPR/Cas9 to identify gene regulation and a targetable pathway. First, we observed an increase in SMARCA4 mutations in cisplatin resistance and metastasis in TNBC patients. Its inactivation was associated with the mesenchymal-like (MSL) subtype. Gene expression analysis showed that the epithelial-to-mesenchymal transition (EMT) pathway was activated in SMARCA4-deficient patients. Next, the Hippo pathway was activated in the SMARCA4 inactivation group, as evidenced by the higher CTNNB1, TGF-beta, and YAP1 oncogene signature scores. In SMARCA4 knockout cells, EMT was upregulated, and the cell line transcriptome changed from the SL to the MSL subtype. SMARCA4 knockout cells showed cisplatin resistance and Hippo-YAP/TAZ target gene activation. The YAP1 inhibitor verteporfin suppressed the expression of YAP1 target genes, and decreased cell viability and invasiveness on SMARCA4 knockout cells. SMARCA4 inactivation in TNBC endowed the resistance to cisplatin via EMT activation. The YAP1 inhibitor could become a novel strategy for patients with SMARCA4-inactivated TNBC.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Medicine > Department of Medical Science > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.