Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailoring the Interfacial Band Offset by the Molecular Dipole Orientation for a Molecular Heterojunction Selector

Authors
Eo, Jung SunShin, JaehoYang, SeunghoonJeon, TakgyeongLee, JaehoChoi, SanghyeonLee, Chul-HoWang, Gunuk
Issue Date
11월-2021
Publisher
WILEY
Keywords
2D semiconductor; molecular dipole moment; molecular electronics; molecular heterojunction; molecular selector
Citation
ADVANCED SCIENCE, v.8, no.21
Indexed
SCIE
SCOPUS
Journal Title
ADVANCED SCIENCE
Volume
8
Number
21
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/135915
DOI
10.1002/advs.202101390
ISSN
2198-3844
Abstract
Understanding and designing interfacial band alignment in a molecular heterojunction provides a foundation for realizing its desirable electronic functionality. In this study, a tailored molecular heterojunction selector is implemented by controlling its interfacial band offset between the molecular self-assembled monolayer with opposite dipole orientations and the 2D semiconductor (1(L)-MoS2 or 1(L)-WSe2). The molecular dipole moment direction determines the direction of the band bending of the 2D semiconductors, affecting the dominant transport pathways upon voltage application. Notably, in the molecular heterostructure with 1(L)-WSe2, the opposite rectification direction is observed depending on the molecular dipole moment direction, which does not hold for the case with 1(L)-MoS2. In addition, the nonlinearity of the molecular heterojunction selector can be significantly affected by the molecular dipole moment direction, type of 2D semiconductor, and metal work function. According to the choice of these heterojunction constituents, the nonlinearity is widely tuned from 1.0 x 10(1) to 3.6 x 10(4) for the read voltage scheme and from 0.4 x 10(1) to 2.0 x 10(5) for the half-read voltage scheme, which can be scaled up to an approximate to 482 Gbit crossbar array.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE