Time-Variable Chiroptical Vibrational Sum-Frequency Generation Spectroscopy of Chiral Chemical Solution
- Authors
- Lee, Taegon; Oh, Juntaek; Nah, Sanghee; Choi, Dae Sik; Rhee, Hanju; Cho, Minhaeng
- Issue Date
- 21-10월-2021
- Publisher
- AMER CHEMICAL SOC
- Citation
- JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.12, no.41, pp.10218 - 10224
- Indexed
- SCIE
SCOPUS
- Journal Title
- JOURNAL OF PHYSICAL CHEMISTRY LETTERS
- Volume
- 12
- Number
- 41
- Start Page
- 10218
- End Page
- 10224
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/136016
- DOI
- 10.1021/acs.jpclett.1c02479
- ISSN
- 1948-7185
- Abstract
- Vibrational sum-frequency generation (VSFG) spectroscopy, a surface-specific technique, was shown to be useful even for characterizing the vibrational optical activity of chiral molecules in isotropic bulk liquids. However, accurately determining the spectroscopic parameters is still challenging because of the spectral congestion of chiroptical VSFG peaks with different amplitudes and phases. Here, we show that a time-variable infrared-visible chiroptical three-wave-mixing technique can be used to determine the spectroscopic parameters of second-order vibrational response signals from chiral chemical liquids. For varying the delay time between infrared and temporally asymmetric visible laser pulses, we measure the chiral VSFG, achiral VSFG, and their interference spectra of bulk R-(+)-limonene liquid and perform a global fitting analysis for those time-variable spectra to determine their spectroscopic parameters accurately. We anticipate that this time-variable VSFG approach will be useful for developing nearly background-free chiroptical characterization techniques with enhanced spectral resolution.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Science > Department of Chemistry > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.