Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biochars ages differently depending on the feedstock used for their production: Willow- versus sewage sludge-derived biochars

Authors
Siatecka, AnnaRozylo, KrzysztofOk, Yong SikOleszczuk, Patryk
Issue Date
1-Oct-2021
Publisher
ELSEVIER
Keywords
Abiotic oxidation; Aging; Pyrolysis; Sewage sludge; Stability; Willow
Citation
SCIENCE OF THE TOTAL ENVIRONMENT, v.789
Indexed
SCIE
SCOPUS
Journal Title
SCIENCE OF THE TOTAL ENVIRONMENT
Volume
789
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136084
DOI
10.1016/j.scitotenv.2021.147458
ISSN
0048-9697
Abstract
The aim of this study was to determine the effect of abiotic aging of biochars under controlled laboratory conditions on its physicochemical properties and in consequence on their stability. Biochars (BCs) produced at 500 and 700 degrees C from willow or sewage sludge were incubated at different temperatures (-20, 4, 20, 60, or 90 degrees C) for 6 and 12 months. Pristine (i.e. immediately after their production) and aged BCs were characterized using a range of complementary methods. As a result of simulated temperature aging, there was a change in all biochar properties studied, with the direction of these changes being determined by both the type of feedstock and biochar production temperature. At all temperatures, aging was the most intense during the first 6 months and led to oxidation of the biochars and removal of the most labile components from them. The intensity of these processes increased with increasing aging temperature. Incubation of the biochars for another 6 months did not have such a significant effect on the biochar properties as that observed during the first months of incubation, which is evidence that the biochars had reached stability. The sewage sludge-derived biochars with a higher mineral content than the willow-derived biochars were less stable. The low-temperature biochars (BC-500) with lower aromaticity were more prone to abiotic oxidation than the high-temperature biochars (BC-700) with higher aromaticity and structurally ordered C. Based on this study, it can be concluded that aging induced changes will be specific for each biochar, i.e. they will depend on both the type of feedstock and pyrolysis temperature. Nonetheless, all biochars will be oxidized to a smaller or greater extent, which will result in an increase in the number of surface oxygen functional groups, an increased degree of their hydrophilicity and polarity, and a decrease in pH. (c) 2021 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE