Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Joint categorical and ordinal learning for cancer grading in pathology images

Authors
Trinh Thi Le VuongKim, KyungeunSong, BoramKwak, Jin Tae
Issue Date
10월-2021
Publisher
ELSEVIER
Keywords
Cancer grading; Categorical classification; Multi-task learning; Ordinal classification
Citation
MEDICAL IMAGE ANALYSIS, v.73
Indexed
SCIE
SCOPUS
Journal Title
MEDICAL IMAGE ANALYSIS
Volume
73
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136190
DOI
10.1016/j.media.2021.102206
ISSN
1361-8415
Abstract
Cancer grading in pathology image analysis is one of the most critical tasks since it is related to patient outcomes and treatment planning. Traditionally, it has been considered a categorical problem, ignoring the natural ordering among the cancer grades, i.e., the higher the grade is, the more aggressive it is, and the worse the outcome is. Herein, we propose a joint categorical and ordinal learning framework for cancer grading in pathology images. The approach simultaneously performs both categorical classification and ordinal classification and aims to leverage the distinctive features from the two tasks. Moreover, we propose a new loss function for the ordinal classification task that offers an improved contrast between the correctly classified examples and misclassified examples. The proposed method is evaluated on multiple collections of colorectal and prostate pathology images that underwent different acquisition and processing procedures. Both quantitative and qualitative assessments of the experimental results confirm the effectiveness and robustness of the proposed method in comparison to other competing methods. The results suggest that the proposed approach could permit improved histopathologic analysis of cancer grades in pathology images. (c) 2021 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwak, Jin Tae photo

Kwak, Jin Tae
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE