Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancement of electrical performance of atomic layer deposited SnO films via substrate surface engineering

Authors
Baek, In-HwanCho, Ah-JinLee, Ga YeonChoi, HeenangWon, Sung OkEom, TaeyongChung, Taek-MoHwang, Cheol SeongKim, Seong Keun
Issue Date
28-9월-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.9, no.36, pp.12314 - 12321
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
9
Number
36
Start Page
12314
End Page
12321
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136301
DOI
10.1039/d1tc02703d
ISSN
2050-7526
Abstract
Atomic layer deposition (ALD) is a technique based on the surface reaction of precursors; thus, it strongly depends on the surface states of the substrate. We demonstrate significant changes in the structural and electrical properties of SnO thin films via modification of substrate surface states. The surface of SiO2 exposed to the atmosphere is usually contaminated by organic compounds and lacks hydroxyl groups. The plasma treatment effectively formed numerous functional groups on SiO2, eventually resulting in significant differences in the growth characteristics and properties of ALD-grown SnO films. In the case of a plasma-treated SiO2 substrate, the SnO layer was fully crystallized at the SnO/SiO2 interface, and the (00l) planes of SnO were aligned parallel to the substrate. The numerous functional groups on the plasma-treated SiO2 promoted a complete reaction on the surface, which resulted in the formation of more stoichiometric SnO containing fewer impurities near the interface. The changes in the interfacial properties by the plasma treatment of SiO2 enhanced the field-effect mobility from 0.7 to 2.0 cm(2) V-1 s(-1) and reduced the hysteresis voltage. The findings may contribute to the realization of complementary oxide thin film devices in future electronics.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE