Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater
- Authors
- Park, Chanwoo; Kim, Taegun; Samuel, Edmund P.; Kim, Yong-Il; An, Seongpil; Yoon, Sam S.
- Issue Date
- 15-9월-2021
- Publisher
- ELSEVIER
- Keywords
- Fabric heater; Fabric supercapacitor; Multifunctional conductive fabric; Supersonic cold spraying; Thermal and strain sensors
- Citation
- JOURNAL OF POWER SOURCES, v.506
- Indexed
- SCIE
SCOPUS
- Journal Title
- JOURNAL OF POWER SOURCES
- Volume
- 506
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/136347
- DOI
- 10.1016/j.jpowsour.2021.230142
- ISSN
- 0378-7753
- Abstract
- Reduced graphene oxide (rGO), carbon nanotubes (CNTs), and copper nanoparticles were supersonically sprayed onto a fabric to yield a wearable energy storage device with multifunctional sensing capabilities. This wearable electronic device is superhydrophobic and antibacterial, demonstrating its suitability for smart sportswear, futuristic military uniforms, healthcare monitoring, human-machine interfaces, and intelligent soft robotics. Both rGO and the CNTs contribute to the double-layer capacitance properties, owing to the accumulation of electrostatic charges, whereas copper enhances the charge transfer and pseudocapacitance via redox reactions with the electrolyte. The fabric is bendable, stretchable, and durable with respect to external mechanical stress. Because of the supersonic impact during coating, the deposited materials adhere well to the fabric surface to retain the durable mechanical properties. The rGO/CNT/Cu-coated fabric produced thermal energy by Joule heating upon application of an electrical voltage. This metallized fabric is also capable of sensing the surrounding temperature and variations in the external strain. The antibacterial properties of the fabric ensure that harmful microorganisms are destroyed, potentially preventing the spread of disease. All of these unique properties of the metallized fabric make it suitable for use in future electronic textiles, which are useful for energy-storing, heating, sensing, water-repellent, and antiviral applications.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Mechanical Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.