Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Superhydrophobic antibacterial wearable metallized fabric as supercapacitor, multifunctional sensors, and heater

Authors
Park, ChanwooKim, TaegunSamuel, Edmund P.Kim, Yong-IlAn, SeongpilYoon, Sam S.
Issue Date
15-9월-2021
Publisher
ELSEVIER
Keywords
Fabric heater; Fabric supercapacitor; Multifunctional conductive fabric; Supersonic cold spraying; Thermal and strain sensors
Citation
JOURNAL OF POWER SOURCES, v.506
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF POWER SOURCES
Volume
506
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136347
DOI
10.1016/j.jpowsour.2021.230142
ISSN
0378-7753
Abstract
Reduced graphene oxide (rGO), carbon nanotubes (CNTs), and copper nanoparticles were supersonically sprayed onto a fabric to yield a wearable energy storage device with multifunctional sensing capabilities. This wearable electronic device is superhydrophobic and antibacterial, demonstrating its suitability for smart sportswear, futuristic military uniforms, healthcare monitoring, human-machine interfaces, and intelligent soft robotics. Both rGO and the CNTs contribute to the double-layer capacitance properties, owing to the accumulation of electrostatic charges, whereas copper enhances the charge transfer and pseudocapacitance via redox reactions with the electrolyte. The fabric is bendable, stretchable, and durable with respect to external mechanical stress. Because of the supersonic impact during coating, the deposited materials adhere well to the fabric surface to retain the durable mechanical properties. The rGO/CNT/Cu-coated fabric produced thermal energy by Joule heating upon application of an electrical voltage. This metallized fabric is also capable of sensing the surrounding temperature and variations in the external strain. The antibacterial properties of the fabric ensure that harmful microorganisms are destroyed, potentially preventing the spread of disease. All of these unique properties of the metallized fabric make it suitable for use in future electronic textiles, which are useful for energy-storing, heating, sensing, water-repellent, and antiviral applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE