Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

ApoE4 attenuates autophagy via FoxO3a repression in the brain

Authors
Sohn, Hee-YoungKim, Seong-IkPark, Jee-YunPark, Sung-HyeKoh, Young HoKim, JoonJo, Chulman
Issue Date
2-Sep-2021
Publisher
NATURE PORTFOLIO
Citation
SCIENTIFIC REPORTS, v.11, no.1
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
11
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136394
DOI
10.1038/s41598-021-97117-6
ISSN
2045-2322
Abstract
Apolipoprotein E (ApoE) plays multiple roles in lipid transport, neuronal signaling, glucose metabolism, mitochondrial function, and inflammation in the brain. It is also associated with neurodegenerative diseases, and its influence differs depending on the isoform. In particular, the epsilon 4 allele of APOE is the highest genetic risk factor for developing late-onset Alzheimer's disease (AD). However, the mechanism by which ApoE4 contributes to the pathogenesis of AD remains unclear. We investigated the effect of ApoE4 on autophagy in the human brains of ApoE4 carriers. Compared to non-carriers, the expression of FoxO3a regulating autophagy-related genes was significantly reduced in ApoE4 carriers, and the phosphorylation level of FoxO3a at Ser253 increased in ApoE4 carriers, indicating that FoxO3a is considerably repressed in ApoE4 carriers. As a result, the protein expression of FoxO3a downstream genes, such as Atg12, Beclin-1, BNIP3, and PINK1, was significantly decreased, likely leading to dysfunction of both autophagy and mitophagy in ApoE4 carriers. In addition, phosphorylated tau accumulated more in ApoE4 carriers than in non-carriers. Taken together, our results suggest that ApoE4 might attenuate autophagy via the repression of FoxO3a in AD pathogenesis. The regulation of the ApoE4-FoxO3a axis may provide a novel therapeutic target for the prevention and treatment of AD with the APOE4 allele.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE