Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Prediction of changing predator-prey interactions under warming: A simulation study using two aphid-ladybird systems

Authors
Lee, MinyoungKim, YongeunPark, Jung-JoonCho, Kijong
Issue Date
Sep-2021
Publisher
WILEY
Keywords
Rosenzweig and MacArthur model; biological control; climate change; long-term interaction; short-term interaction
Citation
ECOLOGICAL RESEARCH, v.36, no.5, pp.788 - 802
Indexed
SCIE
SCOPUS
Journal Title
ECOLOGICAL RESEARCH
Volume
36
Number
5
Start Page
788
End Page
802
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136429
DOI
10.1111/1440-1703.12243
ISSN
0912-3814
Abstract
Predator-prey interactions are key factors for understanding ecosystem structure and function. Global warming alters the dynamics and stability of predator and prey populations in the long term. Extreme temperatures can also lead to short-term population outbreaks and collapses. Thus, it is necessary to consider time scales when predicting warming effects on predator-prey interactions. Two aphid-ladybird systems, Myzus persicae-Coccinella septempunctata (M-C) and Aphis gossypii-C. septempunctata (A-C), were investigated. Using a temperature-dependent predator-prey model, the short- (SIS, daily interactions) and long-term interaction strength (LIS, interactions after reaching a persistent state) were quantified under different temperatures based on a dynamic index. SIS and LIS increased with temperature, but the patterns and magnitudes of the two systems differed. SIS increased linearly and exponentially in the A-C and M-C system, respectively. However, the SISs in the A-C system were stronger than those in the M-C system under most temperature ranges. LIS increased linearly with temperature in both systems; its values in the M-C system were always larger than those in the A-C system. The abruptly increasing SIS in the M-C system caused population collapse, which was the main reason for the magnitude reversal between the SISs and LISs of the two systems. The A-C system did not collapse, but a decoupled SIS and subsequent aphid outbreak were temporarily observed under extreme temperatures. Understanding how time scales influence interaction strengths may be critical to predicting population stability and fluctuations in ecosystems.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Ki jong photo

Cho, Ki jong
College of Life Sciences and Biotechnology (Division of Environmental Science and Ecological Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE