Sex-Biased Gene Expression and Isoform Profile of Brine Shrimp Artemia franciscana by Transcriptome Analysis
- Authors
- Jo, Euna; Lee, Seung-Jae; Choi, Eunkyung; Kim, Jinmu; Lee, Jun-Hyuck; Park, Hyun
- Issue Date
- 9월-2021
- Publisher
- MDPI
- Keywords
- Artemia franciscana; isoforms; sex determination; sex-biased gene expression; transcriptome
- Citation
- ANIMALS, v.11, no.9
- Indexed
- SCIE
SCOPUS
- Journal Title
- ANIMALS
- Volume
- 11
- Number
- 9
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/136475
- DOI
- 10.3390/ani11092630
- ISSN
- 2076-2615
- Abstract
- Simple Summary The brine shrimp Artemia is a promising model organism for ZW sex determination system, but the genes related to sex determination and differentiation of Artemia have not yet been examined in detail. In this study, the first isoform-level transcriptome sequencing was performed on female and male Artemia franciscana. By using PacBio Iso-Seq and Illumina RNA-Seq technologies, we found 39 candidate sex determination genes that showed sex-biased gene expression. The male-biased expressed genes included DMRT1 and Sad genes, which had three and seven isoforms, respectively. Among these, the Sad gene is an ecdysteroid biosynthetic pathway gene associated with arthropod molting and metamorphosis. We propose the importance and the necessity of further research on genes involved in ecdysteroid biosynthesis. These results will contribute to understand sex determination and differentiation of Artemia and other crustaceans having ZW systems. The brine shrimp Artemia has a ZW sex determination system with ZW chromosomes in females and ZZ chromosomes in males. Artemia has been considered a promising model organism for ZW sex-determining systems, but the genes involved in sex determination and differentiation of Artemia have not yet been identified. Here, we conducted transcriptome sequencing of female and male A. franciscana using PacBio Iso-Seq and Illumina RNA-Seq techniques to identify candidate sex determination genes. Among the 42,566 transcripts obtained from Iso-Seq, 23,514 were analyzed. Of these, 2065 (8.8%) were female specific, 2513 (10.7%) were male specific, and 18,936 (80.5%) were co-expressed in females and males. Based on GO enrichment analysis and expression values, we found 10 female-biased and 29 male-biased expressed genes, including DMRT1 and Sad genes showing male-biased expression. Our results showed that DMRT1 has three isoforms with five exons, while Sad has seven isoforms with 2-11 exons. The Sad gene is involved in ecdysteroid signaling related to molting and metamorphosis in arthropods. Further studies on ecdysteroid biosynthetic genes are needed to improve our understanding of Artemia sex determination. This study will provide a valuable resource for sex determination and differentiation studies on Artemia and other crustaceans with ZW systems.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Biotechnology > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.