Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailoring of Pt Island RuO2/C Catalysts by Galvanic Replacement to Achieve Superior Hydrogen Oxidation Reaction and CO Poisoning Resistance

Authors
Lee, Dong WookChoi, DaeilLee, Myeong JaeJin, HaneulLee, SehyunJang, InjoonPark, Hee-YoungJang, Jong HyunKim, Hyoung-JuhnLee, Kwan-YoungYoo, Sung Jong
Issue Date
23-8월-2021
Publisher
AMER CHEMICAL SOC
Keywords
CO tolerance; bifunctional effect; electronic effect; hydrogen oxidation reaction; platinum nanoparticle; ruthenium oxide
Citation
ACS APPLIED ENERGY MATERIALS, v.4, no.8, pp.8098 - 8107
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED ENERGY MATERIALS
Volume
4
Number
8
Start Page
8098
End Page
8107
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136824
DOI
10.1021/acsaem.1c01397
ISSN
2574-0962
Abstract
For the commercialization of fuel cells, it is necessary to use pure hydrogen. This is because carbon monoxide (CO) present in hydrogen generated by the reformation of hydrocarbon-based fuels directly affects the fuel cell performance when Pt is used. To improve CO oxidation reactions on the Pt surface, various methods have been reported such as tuning the electronic structure of Pt to weaken the Pt-CO bond (electronic effect) and increasing the amount of the supplied oxygen species (bifunctional effect). Herein, we synthesized a Pt island RuO2/C (PiR/C) catalyst, in which Pt nanoparticles were placed like islands on RuO2 using the galvanic replacement method. PiR/C showed excellent hydrogen oxidation reaction activity despite its low Pt content. The analysis of the electronic structure of Pt confirmed that PiR/C prevents CO poisoning. Additionally, electrochemical analyses including CO stripping and CO bulk oxidation were performed. By these analyses, it is confirmed that CO was first removed at the high CO coverage on the PiR/C surface by the Eley-Rideal mechanism and further CO oxidation reactions were promoted by the Langmuir-Hinshelwood mechanism. Finally, superior CO management under the actual operating conditions of PiR/C was verified by single-cell analysis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE