Algal glycobiotechnology: omics approaches for strain improvement
- Authors
- Sirohi, Ranjna; Joun, Jaemin; Choi, Hong Ii; Gaur, Vivek Kumar; Sim, Sang Jun
- Issue Date
- 21-8월-2021
- Publisher
- BMC
- Keywords
- Genomics; Metabolomics; Microalgae; Omics; Proteomics; Transcriptomics
- Citation
- MICROBIAL CELL FACTORIES, v.20, no.1
- Indexed
- SCIE
SCOPUS
- Journal Title
- MICROBIAL CELL FACTORIES
- Volume
- 20
- Number
- 1
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/136828
- DOI
- 10.1186/s12934-021-01656-6
- ISSN
- 1475-2859
- Abstract
- Microalgae has the capability to replace petroleum-based fuels and is a promising option as an energy feedstock because of its fast growth, high photosynthetic capacity and remarkable ability to store energy reserve molecules in the form of lipids and starch. But the commercialization of microalgae based product is difficult due to its high processing cost and low productivity. Higher accumulation of these molecules may help to cut the processing cost. There are several reports on the use of various omics techniques to improve the strains of microalgae for increasing the productivity of desired products. To effectively use these techniques, it is important that the glycobiology of microalgae is associated to omics approaches to essentially give rise to the field of algal glycobiotechnology. In the past few decades, lot of work has been done to improve the strain of various microalgae such as Chlorella, Chlamydomonas reinhardtii, Botryococcus braunii etc., through genome sequencing and metabolic engineering with major focus on significantly increasing the productivity of biofuels, biopolymers, pigments and other products. The advancements in algae glycobiotechnology have highly significant role to play in innovation and new developments for the production algae-derived products as above. It would be highly desirable to understand the basic biology of the products derived using -omics technology together with biochemistry and biotechnology. This review discusses the potential of different omic techniques (genomics, transcriptomics, proteomics, metabolomics) to improve the yield of desired products through algal strain manipulation.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.