Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Simultaneous Enhanced Efficiency and Stability of Perovskite Solar Cells Using Adhesive Fluorinated Polymer Interfacial Material

Authors
Lyu, MeiPark, SungminLee, HyeonjuMa, Boo SooPark, So HyunHong, Ki-HaKim, HyungjunKim, Taek-SooNoh, Jun HongSon, Hae JungPark, Nam-Gyu
Issue Date
4-8월-2021
Publisher
AMER CHEMICAL SOC
Keywords
fluorinated conjugated polymer; hole-transporting layer; interfacial layer; moisture stability; perovskite solar cell
Citation
ACS APPLIED MATERIALS & INTERFACES, v.13, no.30, pp.35595 - 35605
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
13
Number
30
Start Page
35595
End Page
35605
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136873
DOI
10.1021/acsami.1c05822
ISSN
1944-8244
Abstract
For enhancing the performance and long-term stability of perovskite solar cell (PSC) devices, interfacial engineering between the perovskite and hole-transporting material (HTM) is important. We developed a fluorinated conjugated polymer PFPT3 and used it as an interfacial layer between the perovskite and HTM layers in normal-type PSCs. Interaction of perovskite and PFPT3 via Pb-F bonding effectively induces an interfacial dipole moment, which resulted in energy-level bending; this was favorable for charge transfer and hole extraction at the interface. The PSC device achieved an increased efficiency of 22.00% with an open-circuit voltage of 1.13 V, short-circuit current density of 24.34 mA/cm(2), and fill factor of 0.80 from a reverse scan and showed an averaged power conversion efficiency of 21.59%, which was averaged from forward and reverse scans. Furthermore, the device with PFPT3 showed much improved stability under an 85% RH condition because hydrophobic PFPT3 reduced water permeation into the perovskite layer, and more importantly, the enhanced contact adhesion at the PFPT3-mediated perovskite/HTM interface suppressed surface delamination and retarded water intrusion. The fluorinated conjugated polymeric interfacial material is effective for improving not only the efficiency but also the stability of the PSC devices.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE