Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Chemical control of receptor kinase signaling by rapamycin-induced dimerization

Authors
Kim, SaraPark, JeonghyangJeon, Byeong WookHwang, GeonheeKang, Na YoungWe, YeimPark, Won-YoungOh, EunkyooKim, Jungmook
Issue Date
2-8월-2021
Publisher
CELL PRESS
Keywords
BAK1; BRI1; FLS2; brassinosteroids; leucine-rich repeat receptor kinase
Citation
MOLECULAR PLANT, v.14, no.8, pp.1379 - 1390
Indexed
SCIE
SCOPUS
Journal Title
MOLECULAR PLANT
Volume
14
Number
8
Start Page
1379
End Page
1390
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/136879
DOI
10.1016/j.molp.2021.05.006
ISSN
1674-2052
Abstract
Membrane-localized leucine-rich repeat receptor kinases (LRR-RKs) sense diverse extracellular signals, and coordinate and specify cellular functions in plants. However, functional understanding and identification of the cellular signaling of most LRR-RKs remain amajor challenge owing to their genetic redundancy, the lack of ligand information, and subtle phenotypes of LRR-RK overexpression. Here, we report an engineered rapamycin-inducible dimerization (RiD) receptor system that triggers a receptor-specific LRR-RK signaling independent of their cognate ligands or endogenous receptors. Using the RiD-receptors, we demonstrated that the rapamycin-mediated association of chimeric cytosolic kinase domains from the BRI1/BAK1 receptor/co-receptor, but not the BRI1/BRI1 or BAK1/BAK1 homodimer, is sufficient to activate downstream brassinosteroid signaling and physiological responses. Furthermore, we showed that the engineered RiD-FLS2/BAK1 could activate flagellin-22-mediated immune signaling and responses. Using the RiD system, we also identified the potential function of an unknown orphan receptor in immune signaling and revealed the differential activities of SERK co-receptors of LRR-RKs. Our results indicate that the RiD method can serve as a synthetic biology tool for precise temporal manipulation of LRR-RK signaling and for understanding LRR-RK biology.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE