Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Applying the diffusive gradient in thin films method to assess soil mercury bioavailability to the earthworm Eisenia fetida

Authors
Nguyen, Viet HuuSeon, Jae-youngQasim, Ghulam HussainFareed, HasanHong, YongseokHan, Seunghee
Issue Date
Aug-2021
Publisher
SPRINGER HEIDELBERG
Keywords
Mercury; Diffusive gradients in thin films; Bioavailability; Earthworm; Organic matter; Water-holding capacity; Eisenia fetida; 0
Citation
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, v.28, no.29, pp.39840 - 39852
Indexed
SCIE
SCOPUS
Journal Title
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume
28
Number
29
Start Page
39840
End Page
39852
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/137081
DOI
10.1007/s11356-021-13344-4
ISSN
0944-1344
Abstract
This study assessed the critical soil characteristics affecting mercury (Hg) bioavailability to the earthworm Eisenia fetida using the diffusive gradient in thin films (DGT) method. The soil samples were collected from a tributary of the Hyeongsan River contaminated with industrial waste and landfill leachates called Gumu Creek. The Hg concentration in the soil had a range of 0.33-170 mu g g(-1) (average 33 +/- 56 mu g g(-1)), and the Hg concentration of earthworms incubated in the soils was 0.83-11 mu g g(-1) (average 2.9 +/- 3.2 mu g g(-1)). When correlation analysis was used to detect the key variables among the soil properties related to Hg accumulation in the soils, earthworms, and resins, the water-holding capacity, which is covaried with the organic matter content, was determined to be a primary factor in increasing Hg accumulation in the soils, earthworms, and resins. However, the experimentally determined earthworm bioaccumulation factor and the DGT accumulation factor were negatively affected by the water-holding capacity. Therefore, the water-holding capacity played a dual role in the Gumu Creek deposits: increasing the soil Hg concentration and decreasing Hg bioavailability and leachability. Further, the DGT-Hg flux was positively correlated with the Hg concentration in earthworms (r = 0.93). Although the earthworm accumulation of Hg is not processed by passive diffusion, this study proves that the DGT method is promising for predicting soil Hg bioavailability to the earthworm E. fetida, and the water-holding capacity simultaneously regulates Hg availability to the DGT and the earthworms.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Environmental Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE