Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Anisotropy as a diagnostic test for distinct tensor-network wave functions of integer- and half-integer-spin Kitaev quantum spin liquids

Authors
Lee, Hyun-YongSuzuki, TakafumiKim, Yong BaekKawashima, Naoki
Issue Date
13-7월-2021
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW B, v.104, no.2
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL REVIEW B
Volume
104
Number
2
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/137138
DOI
10.1103/PhysRevB.104.024417
ISSN
2469-9950
Abstract
Contrasting ground states of quantum magnets with the integer- and half-integer-spin moments are the manifestation of many-body quantum interference effects. In this work, we investigate the distinct nature of the integer- and half-integer-spin quantum spin liquids in the framework of the Kitaev's model on the honeycomb lattice. The models with arbitrary spin quantum numbers are not exactly solvable in contrast to the well-known quantum spin liquid solution of the spin-1/2 system. We use the tensor-network wave functions for the integer-and half-integer-spin quantum spin liquid states to unveil the important difference between these states. We find that the distinct sign structures of the tensor-network wave function for the integer- and half-integer-spin quantum spin liquids are responsible for completely different ground states in the spatially anisotropic limit. Hence the spatial anisotropy would be a useful diagnostic test for distinguishing these quantum spin liquid states, both in the numerical computations and experiments on real materials. We support this discovery via extensive numerics including the tensor-network, DMRG, and exact diagonalization computations.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Applied Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE