Spin-Selective Hole-Exciton Coupling in a V-Doped WSe2Ferromagnetic Semiconductor at Room Temperature
- Authors
- Nguyen, L.-A.T.; Dhakal, K.P.; Lee, Y.; Choi, W.; Nguyen, T.D.; Hong, C.; Luong, D.H.; Kim, Y.-M.; Kim, J.; Lee, M.; Choi, T.; Heinrich, A.J.; Kim, J.-H.; Lee, D.; Duong, D.L.; Lee, Y.H.
- Issue Date
- 28-12월-2021
- Publisher
- American Chemical Society
- Keywords
- diluted ferromagnetic semiconductors; excitons; spin-valley coupling; trions; vdW materials
- Citation
- ACS Nano, v.15, no.12, pp.20267 - 20277
- Indexed
- SCIE
SCOPUS
- Journal Title
- ACS Nano
- Volume
- 15
- Number
- 12
- Start Page
- 20267
- End Page
- 20277
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/137198
- DOI
- 10.1021/acsnano.1c08375
- ISSN
- 1936-0851
- Abstract
- While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe2 monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate the origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe2 monolayer. © 2021 American Chemical Society.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Science > Department of Physics > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.