Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Region-aggregated attention CNN for disease detection in fruit images

Authors
Han, C.H.Kim, E.Nhat, Doan T.N.Han, D.Yoo, S.J.Kwak, J.T.
Issue Date
25-10월-2021
Publisher
Public Library of Science
Citation
PLoS ONE, v.16, no.10 October
Indexed
SCIE
SCOPUS
Journal Title
PLoS ONE
Volume
16
Number
10 October
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/137202
DOI
10.1371/journal.pone.0258880
ISSN
1932-6203
Abstract
Background Diseases and pests have a profound effect on a yearly harvest and productivity in agriculture. A precise and accurate detection of the diseases and pests could facilitate timely treatment and management of the diseases and pests and lessen the resultant loss in economy and health. Herein, we propose an improved design of the disease detection system for plant images. Methods Built upon the two-stage framework of object detection neural networks such as Mask R-CNN, the proposed network involves three types of extensions, including the addition of additional level of feature pyramids to improve the exploration and proposal of candidate regions, the aggregation of feature maps from all levels of feature pyramids per candidate region to fully exploit the information from feature pyramids, and the introduction of a squeeze-and-excitation block to the construction of feature pyramids and the aggregated feature maps to improve the representation of feature maps. Results The proposed network was evaluated using 74 images of infected apple fruits. In 3-fold cross-validation, the proposed network achieved averaged precision (AP) of 72.26, AP at 0.5 threshold of 88.51 and AP at 0.75 threshold of 82.30. In the comparative experiments, the proposed network outperformed the other competing networks. The utility of the three extensions was also demonstrated in comparison to Mask R-CNN. Conclusions The experimental results suggest that the proposed network could identify and localize the symptom of the disease with high accuracy, leading to an early diagnosis and treatment of the disease, and thus holding the potential for improving crop yield and quality. © 2021 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwak, Jin Tae photo

Kwak, Jin Tae
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE