Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Review-Radiation Damage in Wide and Ultra-Wide Bandgap Semiconductors

Authors
Pearton, S. J.Aitkaliyeva, AsselXian, MinghanRen, FanKhachatrian, AniIldefonso, AdrianIslam, ZahabulRasel, Md Abu JafarHaque, AmanPolyakov, A. Y.Kim, Jihyun
Issue Date
1-5월-2021
Publisher
ELECTROCHEMICAL SOC INC
Keywords
Deep level transient spectroscopy; Electron Devices; GaN; III-V; Microelectronics; Semiconductor Materials; Semiconductors; SiC; gallium nitride; gallium oxide; silicon carbide
Citation
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, v.10, no.5
Indexed
SCIE
SCOPUS
Journal Title
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY
Volume
10
Number
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/137395
DOI
10.1149/2162-8777/abfc23
ISSN
2162-8769
Abstract
The wide bandgap semiconductors SiC and GaN are already commercialized as power devices that are used in the automotive, wireless, and industrial power markets, but their adoption into space and avionic applications is hindered by their susceptibility to permanent degradation and catastrophic failure from heavy-ion exposure. Efforts to space-qualify these wide bandgap power devices have revealed that they are susceptible to damage from the high-energy, heavy-ion space radiation environment (galactic cosmic rays) that cannot be shielded. In space-simulated conditions, GaN and SiC transistors have shown failure susceptibility at similar to 50% of their nominal rated voltage. Similarly, SiC transistors are susceptible to radiation damage-induced degradation or failure under heavy-ion single-event effects testing conditions, reducing their utility in the space galactic cosmic ray environment. In SiC-based Schottky diodes, catastrophic single-event burnout (SEB) and other single-event effects (SEE) have been observed at similar to 40% of the rated operating voltage, as well as an unacceptable degradation in leakage current at similar to 20% of the rated operating voltage. The ultra-wide bandgap semiconductors Ga2O3, diamond and BN are also being explored for their higher power and higher operating temperature capabilities in power electronics and for solar-blind UV detectors. Ga2O3 appears to be more resistant to displacement damage than GaN and SiC, as expected from a consideration of their average bond strengths. Diamond, a highly radiation-resistant material, is considered a nearly ideal material for radiation detection, particularly in high-energy physics applications. The response of diamond to radiation exposure depends strongly on the nature of the growth (natural vs chemical vapor deposition), but overall, diamond is radiation hard up to several MGy of photons and electrons, up to 10(15) (neutrons and high energetic protons) cm(-2) and >10(15) pions cm(-2). BN is also radiation-hard to high proton and neutron doses, but h-BN undergoes a transition from sp(2) to sp(3) hybridization as a consequence of the neutron induced damage with formation of c-BN. Much more basic research is needed on the response of both the wide and ultra-wide bandgap semiconductors to radiation, especially single event effects.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE